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Abstract This paper describes and solves the problem of finding the optimal self-

commitment policy in the presence of exogenous price uncertainty, inter-
product substitution options (energy versus reserves sales), different 
markets (real-time versus day-ahead), while taking into consideration 
inter-temporal effects.  The generator models consider minimum and 
maximum output levels for energy and different kinds of reserves, ramping 
rate limits, minimum up and down times, incremental energy costs and 
start-up and shutdown costs.  Finding the optimal market-responsive 
generator commitment and dispatch policy in response to exogenous 
uncertain prices for energy and reserves is analogous to exercising a 
sequence of financial options.  The method can be used to develop bids for 
energy and reserve services in competitive power markets.  The method 
can also be used for determining the optimal policy of physically 
allocating generating and reserve output among different markets (e.g., 
hour-ahead versus day-ahead). 

1. INTRODUCTION 

Unit commitment refers to the problem of deciding when to start and 
when to shutdown generators in anticipation of changing demand [1].  In 
traditional utility systems, the problem of unit commitment was formulated 
and solved as a multi-period optimization problem.  In the traditional 
problem formulation, the anticipated demand was an input variable.  The 
problem was solved for multiple generators, generally owned by the same 
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entity (a utility).  The start-up, shutdown and operating costs of the 
generators were assumed known.  The standard way to analyze and solve 
this problem was by dynamic programming, and within this category of 
problems, the most popular solution method in recent years has been the use 
of Lagrangian relaxation [2,3].   Recently, a new method of decommitment 
has also been proposed [4,5]. 

In a deregulated market this changes. Generators generally have to 
optimally self-commit their units.  Since in most power pools, no single 
merchant owns all the generating assets, the need to meet system load is 
replaced with the need to optimize profits of the merchant’s generating 
plants based on the uncertain market prices at the location(s) where the 
generator(s) is(are) located.  Of course, the forecasts of markets prices 
depend upon a number of factors, the most important of which include 
demand, system-wide generation availability and cost characteristics, and 
transmission constraints.  

We pose the problem of finding the profit-maximizing commitment 
policy of a generating plant that has elected to self-commit in response to 
exogenous but uncertain energy and reserve price forecasts.  Typically, one 
generator’s output does not physically constrain the output of a different 
generator1, so this policy can be applied to each generator in the merchant’s 
portfolio separately and independently.  Therefore, for ease of exposition, 
we assume the case of a single generator.  Generator characteristics such as 
start-up and shutdown costs, minimum and maximum up and down times, 
ramping rates, etc., of this generator are assumed known.  The variation of 
prices for energy and reserves in future time frames is known only 
statistically.  In particular, the prices follow a stochastic rather than 
deterministic process.  We model the process using a Markov chain.   The 
method is applicable to multiple markets (e.g., day-ahead, hour-ahead) and 
multiple products (energy, reserves). 

Other researchers have modeled the effect of energy price uncertainty 
on generator valuation.  In [6], the author models the effect of the spark 
spread on short-term generator valuation. In [7], the authors propose mean 
reverting price processes and use financial options theory to value a 
generating plant.  However, in both [6] and [7], the authors neglect the 
effect of realistic operating constraints such as minimum start-up and 
shutdown times.  In [8], the authors improve upon this work to more 
realistically include the effect of operating constraints to find the short-term 
value of a generating asset; however, they neglect the effect of ramping 
rates. All these papers make assumptions about the risk-neutral price process 
in order to value the power plant.  

                                                      
1 Exceptions include multiple hydroelectric units connected in series, and restrictions on 

aggregate emission levels from multiple generators within an area.  
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This paper focuses not on generator valuation, but on finding the general 
principles for generator self-commitment in the presence of exogenous price 
uncertainty and market multiplicity.  The basic mathematical principles are 
derived from dynamic programming theory [10].   We consider energy and 
reserve markets, although the method can be extended to include additional 
market choices, such as day-ahead versus real-time markets.  The paper is 
organized as follows.  Section 2 defines the problem.  Section 3 gives the 
dynamic programming solution to the problem.  Section 4, 5 illustrate the 
features of the optimal commitment policy using simple illustrative 
examples.  Section 6 gives a more detailed numerical result for a peaking 
generator.  Section 7 concludes the paper.  Appendix A is a technical section 
that solves the single-period optimal generator dispatch problem given 
exogenous prices of energy and reserves. 

2. THE PROBLEM 

We begin by describing the exogenous inputs to the problem.  
Generator capability and cost characteristics.  At any given time t, 

generator G is assumed to be in state xt, where xt is a member of a discrete 
set X={state 1, state 2, ..., state K} of possible states. Inter-temporal 
constraints are represented by state transition rules that specify the possible 
states that the generator can move to in time period t+1, given that the 
generator is in a state xt at time t.  Generally, there is a cost associated in 
moving between different states.  In a simple representation, two states are 
sufficient: “in service” (or “up”) and “out of service” (or “down”).  
However, in general many more states may be needed to represent the 
various conditions of the start-up and shutdown process. 

The degree to which a generator can participate in providing reserves 
depends on its ability to respond to the reserve needs in a timely manner.  
For regulating and spinning reserves, the generator must be already be in 
service; the amount of MW of reserves that a generator can offer must be 
consistent with its ramping rate.  Generators that are already at a maximum 
in terms of energy provision are unable to also participate in the reserves 
market.  Thus, to participate in the reserves markets, the generator cannot 
simultaneously sell all of its capability in the energy market.  

The parameters that describe a generator include: 
•  Minimum and maximum output levels 
•  Ramping rates 
•  Minimum up and down times for the generator 
•  Incremental energy costs and no-load costs 
•  Start-up, shutdown, and banking costs.  
Generator states and state transitions.  Generators can be in any of a 

number of several possible UP, DOWN or transitional states.  For example, 
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for a generator with total capacity of 200 MW, and ramp rate of 100 
MW/hour, we could define 2 UP states, UP1, and UP2.  The state UP1 would 
cover the operating range [0 MW, 100 MW], while the state UP2 would 
cover the operating range [101 MW, 200 MW].   Likewise, minimum down 
times can be enforced by defining multiple DOWN states.  Only certain 
transitions among these states are permissible.  Furthermore, transition 
between states generally involves a cost.  For example, going from a cold 
shutdown to an online state will involve a start-up cost.   

Generator dispatch constraints.  A generator may have additional 
dispatch constraints that restrict its operation.  For example, the generator 
may need to be offline (in the “off” state) during certain periods for 
scheduled repairs.  These restrictions are modelled as time dependent 
constraints on generator states.   

Exogenous price forecast of energy.  A discrete Markov process 
models the exogenous price pt for energy.  In each time period, a discrete 
price state represents a price range.  The price at time t+∆t is 
probabilistically related to the price at time t via a price transition matrix.  
That is, prob(a1 ≤  pt+∆t ≤  b1 | a ≤  pt ≤  b) is a known quantity.  One can 
think of a price forecast at any time t to be a baseline price point plus a 
random uncertainty around the baseline forecast  

Since the exogenous price forecast is an important input of the problem, 
we digress a little to discuss how one may obtain estimates of this input.  
We consider two ways in which price forecasts can be made: 

•  One possible method is to use historical data.  For example, to obtain 
a price forecast for next week, one could use past week data, and 
data from other weeks with similar load/weather patterns as that 
predicted for next week.  This would be a statistical data-mining 
problem.   

•  Another way to forecast prices would be to use numerous Monte 
Carlo iterations of structural computer models (such as optimal 
power flow models and production cost models) to model the 
uncertainty of prices.   

The physical spot markets for energy include real-time, hour-ahead, day-
ahead, and possibly week-ahead markets2.   Each of these spot markets is a 
different market, e.g., energy prices for a particular hour could be different 
in day-ahead and real-time markets and could have very different 
characteristics in terms of price volatility.  A generator will often have a 
choice as to which market to use to sell its energy.   
 

Exogenous price forecast of reserves. Operating reserves are 
distinguished by the speed with which they become available and the length 
                                                      
2 It is doubtful whether forward prices quoted month-ahead (or more) will influence an 

individual generator’s commitment and dispatch decisions. 
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of time that they remain available.  In the nomenclature of the Federal 
Energy Regulatory Commission, the primary types of reserves (from fastest 
to slowest) are regulating, spinning, supplemental, and backup reserves. For 
example, regulating reserves need to be available for following moment to 
moment fluctuations in system demand, and can generally be offered by 
generators on Automatic Generation Control (AGC).  As another example, 
to offer 10 MW of spinning reserves, a generator must be online and must 
be capable of producing 10 MW within 10 minutes.  Supplemental reserves 
and backup reserves are slower reserve types. For generators who provide 
reserve services, there are two types of reserve costs (see [11] for more 
details).  These are reserve availability costs, which are the costs of making 
reserves available even if they are not actually used, and reserve use costs, 
which are the costs incurred when the reserves are actually used.   
Generally, reserve use costs are compensated at the spot price of energy3.  
Reserve availability costs are the opportunity costs of generators, i.e., they 
include off-economic dispatch costs, and costs of starting up or shutting 
down generators.  In California, New York, New England, and the 
Pennsylvania-Jersey-Maryland (PJM) system, there is currently a 
competitive market clearing process for setting the reserve availability costs 
of some or all of the above reserve types.  Reserve availability prices are 
modeled similarly to energy prices, i.e., as a discrete Markov chain.  
However, we allow the reserve availability prices to be correlated with the 
energy prices.  One particularly simple way to model reserve uncertainty is 
to assume perfect correlation between energy prices and reserve availability 
prices.   

Exogenous fuel price forecasts.  Fuel prices can be modeled similarly 
to reserve availability prices.  However, since most practical commitment 
periods are less than a week and fuel prices typically show much less 
volatility than energy prices over this interval, it is a not a bad 
approximation to keep these inputs constant. Therefore, for ease of 
exposition, we assume fixed fuel prices throughout the paper.  However, it is 
fairly straightforward to also include uncertainty in fuel prices; see, for 
example, [8].   

Start and end time periods.  We will assume that the start time period 
is at time 1, and that the end time period is at time T.  For most practical 
problems, T will be between 1 day and 1 week. 

Next we define some notation; explicit functional dependencies are 
often omitted for clarity.  Given generator state xt and a vector of energy and 
reserve availability prices, pt, at time t,   

                                                      
3 In general, reserve use costs could also include the wear-and-tear costs of ramping up and 

down to follow system demand.  However the current custom is that, in competitive 
markets for reserve services, these costs are not directly compensated, and must somehow 
be internalized by the generators.   
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1. ut(xt,pt) (or simply ut) defines the commitment policy for time t, i.e., 
it signifies a particular valid rule to move the generator from state xt 
at time t to a new state ut(xt,pt) at time t+1.  

2. dt(xt,pt) (or simply dt) defines the dispatch policy for time t, i.e., it 
represents a particular dispatch of energy and reserves for the 
generator at time t, given that the generator is in state xt. 

3. πt(xt, pt) denotes single-period profits at time t4, i.e., the profits 
realized by the dispatch dt(xt,pt). 

4. ct(xt,ut) denotes the cost of transitioning (e.g., start-up or shutdown 
costs) from state xt at time t to state ut(xt,pt) at time t+1 due to the 
commitment policy ut used in time period t. 

The problem can now be posed as: 
[PROBLEM]  Find the best commitment and dispatch policy (u*, d*) 

that maximizes expected total profits E(Σ(πt(xt,pt)- ct(xt,ut)) over all possible 
commitment policies u=(u1,u2,u3,....,uT) and all possible dispatch policies 
d=(d1,d2,d3,....,dT), where E denotes the expected value over the uncertain 
price forecasts5.  

Before we proceed further, it is useful to summarize the essential 
features of the problem: 

•  Inter-product substitutability: market participants have a choice 
between sales in the energy versus sales in the reserve markets.  
These markets operate simultaneously  (though the markets for 
energy and reserves may clear sequentially, as they currently do in 
California).  Moreover, market participants have a choice of offering 
their products in different markets (e.g., day-ahead versus hour-
ahead markets). 

•  Price uncertainty.  The future prices of energy and of reserves at 
the location of the generator of interest are unknown but follow a 
known random process.  The general characteristics of the random 
process are estimated by the generator wishing to self-commit. 

•  Inter-temporal effects: Inter-temporal constraints affect the 
generator’s operations.  This may lead to situations when a market 
participant can elect to remain on during certain periods when 
operation will be at a loss in return for likely (but not certain) profits 
in later periods. 

                                                      
4 Current period profits do not include transition costs.   
5 This objective function assumes that the generator is risk-neutral.  If the generator is risk-

averse, the objective function should reduce the expected outcome according to some 
measure of risk.  For example, the objective might be to maximize E{π-c}-a*V{π-
c}where “V” is the variance of net profit and “a” is a risk aversion coefficient. As another 
example, the objective function could be an exponential utility function with constant 
relative risk aversion [12]. Now the objective function would be multiplicative in nature, 
but we can take natural logarithms to convert the objective function to the form shown in 
this paper.  
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We are interested in finding both the optimal commitment and the 
optimal dispatch policy.  We stress that the problem is complicated by the 
fact that at the time the commitment decision is made, future prices are 
uncertain.  The next section addresses this problem. 

3. OPTIMAL COMMITMENT AND DISPATCH 
POLICY 

We now present the optimal commitment and dispatch policy.  The 
optimal dispatch policy is fairly straightforward: given an exogenous price 
forecast for time period t, the generator takes its current state xt as given, 
and dispatches energy and reserves in an optimal manner for time period t, 
without regard to other time periods.  Appendix A briefly describes the 
single-period optimal dispatch.  However, the profit-maximizing 
commitment decision for transitioning to the next time period is more 
complicated because actions taken now affect future time periods.  

The backward dynamic programming (DP) method for solving this 
problem starts at the final time period T and works backward using the 
following steps.  The backward DP method (see [4]) is as follows6: 

(Step 1) Let JT(xT,pT) = max[πT(xT,pT) − cT(uT,pT)] over all possible 
commitment policies uT, and dispatch policies dT.  Let the optimal dispatch 
policy be denoted by d*T, and the optimal commitment policy by u*T.  
JT(xT,pT) must be computed for each possible state xT, and each possible 
price level pT. 

(Step 2) Let JT-1(xT-1,pT-1) = max[πT-1 − cT-1 + E[JT(xT,pT)] | pT−1 ] 
over all possible commitment policies uT-1, and dispatch policies dT-1.  The 
expectation E is taken over all possible price levels pT, given that the price in 
time T−1 is pT-1; pT is probabilistically related to pT-1 via the Markov chain.   
The state at time T, xT is related to xT-1 by the commitment policy uT-1.  Let 
the optimal dispatch policy be d*T-1(xT-1,pT-1), and the optimal commitment 
be u*T-1(xT-1,pT-1).  JT-1(xT-1,pT-1) must be computed for each possible state xT-

1, and each possible price level pT-1.  
(Step T)  Let J1(x1,p1) = max[π1 − c1 + E[J2(x2,p2) | p1] ] over all 

possible commitment policies u1, dispatch policies d1, and price levels p1.  
The expectation E is taken over all possible price levels p2, given that the 
price in time 1 is p1.  The state at time 2, x2 is related to the previous state x1 
by the commitment policy u1, i.e., x2= u*1(x1,p1).  Let the optimal dispatch 
policy be d*1(x1,p1) and the optimal commitment policy be u*1(x1,p1).  
J1(x1,p1) must be computed for each possible state x1, and each price level 
p1. 

                                                      
6 For ease of exposition, we have ignored the boundary condition at time T+1. 
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If the generator is in state x*1, and sees price level p*1 at time t=1, the 
profit-maximizing schedules are represented by the commitment actions 
[u*1(x*1,p*1), u*2(x*2,p*2), ... , u*T(x*T,p*T)] and the dispatch decisions 
[d*1(x*1,p*1), d*2(x*2,p*2), ... , d*T(x*T,p*2)], where x*t+1=u*t(x*t,p*t), for 
t=1,2,...,T-1, and p*t+1 is related probabilistically to p*t via the Markov 
chain, and the maximum expected profits are J1(x*1,p*1).  Actual profits 
and actual schedules depend upon actual price levels encountered in the 
different time periods.  

The algorithm for finding the optimal commitment policy is similar to 
the problem of determining the value of an option using a tree approach [9].  
Therefore the problem of finding an optimal commitment policy can be 
thought of as a generalized tree approach that values and exercises a 
sequence of complicated options in each time period.  The options involve 
decisions such as whether to commit or not, whether to ramp up or ramp 
down, whether to participate in the energy or reserves markets, etc.   

4. ILLUSTRATIVE EXAMPLE 1 

This section illustrates the concept.  For simplicity we assume only one 
product, energy, and one 3-period market, i.e., T=3. 

Suppose that the generator parameters are as shown in Table 1. For this 
example, the generator at time t can be in one of two states, “UP” or 
“DOWN," i.e., X={UP,DOWN}.  There are no inter-temporal constraints.  
The generator can move from any state at time t to any state at time t+1.  
 

Table 1.  Example parameters 

Start-up costs, per start, in $ $60 

Shutdown costs, per shutdown, in $ $12 

Incremental costs, in $/MWh (when UP) $10 

Minimum MW (when UP)    5 

Maximum MW (when UP) 50 

 
A shutdown cost is incurred when the generator moves from an UP state 

to the DOWN state.  A start-up cost is incurred when the generator moves 
from the DOWN state to the UP state.  All other transitions result in zero 
costs. 

In each time period, an exogenous price forecast pt may be described by 
two possibilities: pt is HIGH or pt is LOW, each having a specified 
probability of occurrence. The HIGH and LOW prices in each time period 
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are allowed to vary, as shown in Table 2.  Further assume that the prices at 
time t+1 depend probabilistically upon the prices at time t. The probability 
of a HIGH-HIGH transition is α1 and the probability of a LOW-LOW 
transition is α2.  These are exogenous, with assumed values α1=0.8 and 
α2=0.7.  

The backward DP algorithm finds the profit-maximizing commitment 
and dispatch policy.  The solution is shown in Tables 3(a)-(c).  Columns in 
these tables correspond to time periods. The entry in Table 3(a) that 
corresponds to a “time period t” column and a “state/price” row represents 
the maximum total expected profits for time periods t to T, given that the 
state at time t is xt and the price is pt. 

Table 2.  Exogenous Energy Price Forecast ($/MWh) 
(Number of Time Periods T=3) 

Time Period 1 2 3 

HIGH Price ($/MWh) 9 20 11 

LOW Price ($/MWh)  2 8 1 

 
Similarly, given state xt and price pt at time t, the corresponding entries 

in Tables 3(b)-(e) show respectively: 
1. The optimal dispatch for time t. 

2. The optimal commitment policy for time t, i.e., the next state to 
move to at time t+1. 

3. The maximum profits obtained from the optimal dispatch at time t. 

4. The cost of the optimal commitment policy, or the cost to move from 
the current state xt to the new state at time t+1. 

Table 3 illustrates the results of a standard Backward DP computation.  
These results are obtained, as is standard practice, by solving for the 
respective entries in the table from right to left. 

Table 3(a).  Values of optimal expected profits (in $) 

(State, Price level) Time Period 1 Time Period 2 Time Period 3 

UP, HIGH 415.4 531.0 50.0 

UP, LOW 103.9 −22.0 −45.0 

DOWN, HIGH 360.4 0.0 0.0 

DOWN, LOW 0.0 0.0 0.0 
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Table 3(b).  Optimal dispatch policies d* (in MW) 

(State, Price level) Time Period 1 Time Period 2 Time Period 3 

UP, HIGH 5 50 50 

UP, LOW 5 5 5 

DOWN, HIGH 0 0 0 

DOWN, LOW 0 0 0 

 

Table 3(c).  Optimal commitment policies u* 

(State, Price level) Time Period 1 Time Period 2 Time Period 3 

UP, HIGH UP UP UP 

UP, LOW UP DOWN UP 

DOWN, HIGH UP DOWN DOWN 

DOWN, LOW DOWN DOWN DOWN 

Table 3(d).  Values of π∗  (in $) 

(State, Price level) Time Period 1 Time Period 2 Time Period 3 

UP, HIGH −5.0 500.0 50.0 

UP, LOW −40.0 −10.0 −45.0 

DOWN, HIGH 0.0 0.0 0.0 

DOWN, LOW 0.0 0.0 0.0 

 

Table 3(e).  Values  of c*  (in $) 

(State, Price level) Time Period 1 Time Period 2 Time Period 3 

UP, HIGH 0.0 0.0 0.0 

UP, LOW 0.0 12.0 0.0 

DOWN, HIGH 60.0 0.0 0.0 

DOWN, LOW 0.0 0.0 0.0 

Suppose that, at time t=1, the price level is HIGH and the generator is 
UP.  The maximum expected profits are $415.4 over the three time periods.  
Since the current price level is HIGH and the generator is UP, the optimal 
commitment policy is to stay UP at t=2 (from Table 3(c)), in spite of the 
possibility of net losses over the three periods.  The actual profits and the 
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commitment policies at other times would however depend upon the actual 
price levels that occur in those time periods.  For example, if the price level 
stays HIGH for both t=2 and t=3, the optimal commitment policy is to stay 
UP at t=3, realizing total profits of −5+500+50=$545.  If, on the other hand, 
the price level becomes LOW for t=2, and LOW for t=3, the optimal 
commitment policy is to go DOWN at t=3, realizing profits of 
−5−10−22=−$37.  In other words, the generator loses money under some 
price patterns, even with the optimal policy.  However, the expected profits 
are maximized. 

The optimal schedules given by the backward DP are not static.  Instead, 
they depend upon the exogenous prices in each time period.  Thus the DP 
method does not merely give an optimal schedule.  Rather, it gives an 
optimal scheduling policy corresponding to different conditions. 

5. ILLUSTRATIVE EXAMPLE 2 

In this section, we describe the “optionality” features of the generator 
self-commitment problem, and show that it has features analogous to 
financial options.  We also make additional three points:  

1. Assuming a single average price forecast generally understates the 
value of the optionality, and could severely understate expected 
generator profits. 

2. Running Monte Carlo methods without taking care to ensure that 
future prices are always uncertain (at the time the commitment is 
made) generally overstates the value of the optionality, and 
overstates expected generator profits. 

3. Not considering reserve products (and multiple markets) tends to 
lower expected generator profits, because these additional products 
increase generator optionality. 

First, we consider the optionality due to price uncertainty.  Assume a 
single time-period horizon, and a single product --- the energy service.  
Assume that the generator for which we want to find the optimal 
commitment and dispatch policy has no start-up or shutdown costs, and no 
inter-temporal constraints.  Assume that generator has a capacity of 100 
MW, no minimum generation constraint, and constant incremental costs of 
$30/MWh over this range.  
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Table 4. Expected generator profits as a function of price volatility. Each price forecast is 
represented by a HIGH/LOW price, each with equal probability of occurrence. 

PRICE FORECASTS 
1 2 3 4 5 

HIGH price ($/MWH) 30 35 40 45 50 
LOW price ($/MWh) 30 25 20 15 10 

Expected price ($/MWh) 30 30 30 30 30 
Std. Dev. ($/MWh) 0 7 14 21 28 

Profits (HIGH price) $0 $500 $1000 $1500 $2000 
Profits (LOW price) $0 $0 $0 $0 $0 

Expected profits $0 $250 $500 $750 $1000 
Price volatility7 0% 17% 33% 50% 67% 

 
Table 4 shows five different price forecast scenarios.  Two possible 

price states, HIGH and LOW, each with a 50% probability of occurrence, 
represent each price forecast.  The expected value of the prices for all price 
forecasts is $30/MWh.   The optimal policy for the generator is to produce 
100 MW whenever the energy price exceeds its incremental costs, and to 
produce 0 MW whenever the energy price is below its incremental costs.  
For example, for forecast #3, the generator will produce 0 MW when the 
price is LOW (or $20/MWh), and will make no profits.  When the price is 
HIGH ($40/MWh), the generator will produce 100 MW and make a profit of 
100*(40-30) = $1000.  Since both price scenarios are equally likely for this 
forecast, expected profits are 0*0.5+1000*0.5 = $500.   

Table 4 shows that expected generator profits increase with increasing 
price volatility8.  This is analogous to the value of a financial option that 
increases in value when price volatility increases [9].  On the other hand, if 
one uses an average price of $30/MWh to find a commitment policy for the 
generators, then he/she will estimate that the generator will make no profit 
for any price forecast because the generator incremental costs will not 
exceed the expected energy price.  Therefore average price forecasts fail to 
calculate the value of optionality and understate generator profits. 

Next, we examine a potential pitfall associated with Monte Carlo 
methods. One possible way of finding the expected generator profits to 
capture the optionality value could be to generate a large number of random 
price scenarios for the time interval [0,T] by Monte Carlo methods.  Using 
the ensemble of all generated price scenarios one could then use a 
deterministic model to solve for the optimal commitment and dispatch over 
this period for each member of the ensemble, and then average over 
                                                      
7 Price volatility here is defined as the ratio of the standard deviation to the expected price, 

expressed in percent (and rounded). 
8  All other factors (e.g., expected energy price) remaining constant. 
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different Monte Carlo runs.  This is, however, not always correct.  To see 
this, consider the following example.  Assume a two-period system, with 
each period having a 50% chance of HIGH price ($35/MWh) and a 50% 
chance of having a LOW price ($10/MWh), regardless of the previous 
period.  The generator has the same characteristics as the above example, 
except that there is a minimum generation limit of 90 MW, and an 
additional inter-temporal constraint that, once online, the generator has to 
stay online for two consecutive periods.   The boundary condition is that the 
generator is offline initially, and must be offline at the end of two periods.  It 
can be verified that the optimal policy is not to commit the generators 
regardless of what the period 1 price is9.  Therefore the expected profit under 
the optimal commitment policy is zero.  On the other hand, suppose that we 
first generate all the price scenarios (using a Monte Carlo method), and then 
run a deterministic optimal unit commitment on each possible price 
sequence.  The four equally possible price sequences in the two periods are 
{HIGH, HIGH}, {HIGH, LOW}, {LOW, LOW}, and {LOW, HIGH}.  If 
we make four deterministic unit commitment runs on these four price 
sequences, the deterministic unit commitment will only run the generator at 
maximum output (100 MW) for both time periods when the price sequence 
is {HIGH, HIGH}.  The profit for this price sequence is $1000.  For all 
other price sequences, the generator will not run, and the profit will be zero.  
Hence expected profits using this method will be 0.25*1000+0.75*0 = $250, 
which clearly overstates the expected profits of zero under the true optimal 
commitment policy. The reason for this is that in each Monte Carlo run, the 
generator “peeped ahead” and “knew” the future prices and therefore chose 
the commitment accordingly.  Models for commitment based on the 
traditional approach are likely to follow a variant of this deterministic 
optimization method.  This approach would result in overestimation of 
generator profits. 

Monte Carlo methods are very efficient when one needs to simulate a 
large number of different random outcomes and find the expected value (or 
some other statistic) of some function based on these random outcomes.  
They are much more complicated to implement10, and prohibitively 

                                                      
9 If period 1 price is HIGH, and the generator decided to commit, then the generator would 

produce 100 MW in period 1 to make a profit of $500.  However, there is a 50/50 chance 
that the period 2 price is HIGH or LOW.  If the period 2 price is HIGH, the generator’s 
two-period profit will be $1000.  If period 2 had a LOW price, the generator would 
produce the minimum 90 MW and lose 90*20=$1800 in period 2 for a net two-period loss 
of $1300.  Therefore, if the generator commits to be online when the period 1 price is 
HIGH, the expected two-period payoff is 1000*0.5 − $1300*0.5  = ($150), for an 
expected loss of $150. 

10 See reference [8] for the correct way to implement Monte Carlo methods for such 
problems.  However, in [8], the Monte Carlo method becomes prohibitively expensive as 
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expensive, when the value of a function at any given time t itself depends on 
what may happen in the future, as in optimal commitment policy problems 
that have inter-temporal constraints11.  For example, using the finance 
analogy, Monte Carlo methods are used for European style options and for 
those other types of options when one does not have to worry about when it 
is optimal to exercise the option.  However, American style options are 
much more difficult to solve for using Monte Carlo methods [12, pp. 685]. 

Consider a final example to show the optionality value of multiple 
products (or multiple markets).  Assume a single time-period problem and a 
single reserve product. Consider a generator whose incremental cost is 
$30/MWh, maximum capacity is 100 MW, minimum capacity is 0 MW, and 
maximum reserve capacity of 30 MW.  Assume that the price of energy is 
$45/MWh and reserve availability costs of $20/MW/h.  If the generator 
offers 100 MW of energy only, it will make profits of 100*(45−30) = $1500, 
on revenues of 100*45=$4500.  On the other hand, if it maximizes its 
profits12 and offers 30 MW of reserve and 70 MW of energy, its profits are 
30*20+70*(45−30)=$1650 on revenues of 30*20+70*45=$3750.  (Shifting 
more of the generator output to reserves increases profits, even though total 
revenues decrease relative to the energy-only sale.  This is typical.)  

In summary, the more optionality that a generator has, the higher its 
expected profits will be.  Conversely, the more the operational constraints 
reduce this optionality (e.g., inter-temporal constraints), the lesser will be its 
expected profits, all other factors being equal. 

6. ILLUSTRATIVE EXAMPLE 3 

We now consider a slightly more realistic example13. Assume a peaking 
generator with the characteristics illustrated in Table 5.  The start-up and 
shutdown times for the generator are assumed to be zero.  Figure 1 shows 
the baseline energy price forecast.  Figures 2 and 3 illustrate the anticipated 

                                                                                                                            
the number of generator states and price uncertainty states increase.  See also Section 6 for 
how to use Monte Carlo methods once the optimal self-commitment policy is known. 

11 The Monte Carlo method discussed in this section will work correctly on the problem 
described in Table 4, because the optimal self-commitment policy does not have inter-
temporal features. 

12 Appendix A shows how one may approach the problem when there are more than one 
reserve type.  In this example, while there is profit to be made on the sale of both energy 
and reserves, the generator sees a higher profit margin in reserves, and so maximizes the 
sale of reserves (30 MW).  The remainder is offered as energy (100-30=70 MW). 

13 The results of this section were derived using EPRI’s PROFITMAX model. 
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baseline prices for 4 types of reserves: regulating, spinning, supplemental, 
and backup14.  The total number of time periods is one week (168 hours).   

Table 5.  Generator characteristics  

Start-up costs, per start, in $ 100 

Shutdown costs, per shutdown, in $ 0 

Production cost, constant coefficient ($ per hr) 100 

Production cost, linear coefficient ($ per MWhr) 37 

Production cost, quadratic coeff. ($ per MWhr2) 37 

Minimum MW (when UP)  10 

Maximum MW (when UP) 110 

Maximum regulating reserves (MW) 10 

Maximum spinning reserves (MW) 20 

Maximum supplemental reserves (MW) 40 

Maximum backup reserves (MW) 110 

 

0

10

20

30

40

50

60

1 25 49 73 97 121 145
Time Period (hours)

 
Figure 1:  Price transition. Predicted baseline energy prices.  This is the expected pattern of 

future prices (“baseline” prices) at time t=0. 

                                                      
14 Spinning reserves are defined to be the capability that can be offered in 10 minutes (if 

online).  Supplemental reserves are the amount of MW available in 20 minutes, and 
backup reserves are the amount available in 60 minutes.  
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Figure 2. Baseline reserve availability prices, spinning and regulation.  These are the 
anticipated future patterns of prices (“baseline” prices) at time t=0.  Solid lines show 

regulating reserves while dashed lines show spinning reserves.  
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Figure 3. Baseline reserve availability prices, supplemental (solid lines) and backup (dashed 
lines).  These are the anticipated patterns of future prices (“baseline” prices) at t=0. 

We model price uncertainty using a three-node Markov process.  We 
assume that prices can be at one of three levels: HIGH, BASELINE, or 
LOW.  The BASELINE prices are as illustrated.  The HIGH price for 
energy and reserves is 115% of the corresponding baseline price, and the 
LOW price is 85% of the baseline price.  We assume that there is perfect 
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correlation between energy and reserve availability prices; e.g., when the 
energy price is HIGH, so are the reserve availability prices.  For simplicity, 
we assume that the probability of transition between any one price state to 
any other price state is 1/3.  That is, it is equally likely for the price to 
change states regardless of the present state of prices. 

Using the backward DP methods described in Section 3, we derived the 
optimal commitment and dispatch policy. The optimal commitment and 
dispatch policy at any time t is a function of the state that the generator is in, 
and a function of the uncertain price forecast for future time periods as 
observed at time t.  Future prices are always considered uncertain.  We then 
applied the optimal policy in numerous Monte Carlo runs to simulate 
different profit outcomes. From the Monte Carlo prices, we then calculated 
the actual eventual profits and generator outputs.  Using these outcomes, we 
then illustrate the probability distribution of different generator outputs: 
generator profits, optimal generator dispatch of energy and reserves, etc. 

When the optimal policy found by the DP is used to simulate a number 
of possible states, one obtains a distribution of possible outcomes.  Figure 4 
illustrates this distribution.  There is no assurance that the distribution will 
be neatly “bell shaped” as in this example.  In other examples it is possible 
to have distributions that are skewed or bimodal, particularly when start-up 
and shutdown costs are considered. 

The effects of the optimal commitment policy on the state transitions are 
shown in Figure 5.  For a large number of scenarios, all transitions between 
states that result from the optimal policy are recorded. For some times, the 
state is unique (either UP or DOWN), but for other times the system could 
end up in either state, depending on the price sequence.  This is because it is 
not known which state the generator will be at a future time t.  Figure 5 
shows that, depending on the prices that are actually realized, the generator 
could be in any of the different states at a future time.  The ball “size” 
represents the probability of ending up in a particular state.  The “thickness” 
of a transition line indicates the likelihood that the particular transition will 
take place. 
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Figure 4. Distribution of anticipated profits.  The optimal policy maximizes expected profits, 
but there is variance around this mean value even with an optimal policy.   

92 94 96 98 100 102 104 106 108

ON
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Period  

Figure 5.  Optimal commitment policy with uncertainty.  Only hours 91 to 109 are illustrated.  
During this interval the optimal policy has the option to take several transitions, depending on 

the actual price outcome realized.   Only hours 93, 94 and 104 to 106 have a certain state 
(OFF in this case).  For other periods the relative probability of being in either state is 

represented by the size of the “ball” and the relative transition probability is represented by 
the thickness of the transition “line.”  During certain periods there is both an up transition 

probability and a down transition probability in the optimal policy. 

For comparison, Figure 6 illustrates the optimal commitment policy 
when there is no uncertainty, i.e., the baseline price forecast is the perfect 
forecast.  It can be seen that the effect of price uncertainty recognizes the 
possibility that the generator will begin producing during certain periods if 
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the prices become high (see, in particular, time periods 120-140).  That is, a 
quick-responding generator has the luxury of producing when the prices are 
high, and going offline when the prices are low.  Thus high price volatility 
tends to be beneficial for the expected profits of the peaking generator.  For 
prices higher than its incremental costs, the peaking generator will maximize 
its output (and increase profits), while for prices below its incremental costs, 
the generator will shut down (and have zero profits).  Since profits are 
bounded from below at zero, and monotonically increase as a function of 
price (above the generator’s incremental costs) the generator’s expected 
profits will increase.   

92 94 96 98 100 102 104 106 108
OFF

ON

 

Figure 6.  Optimal Commitment Policy (no uncertainty).  All “balls” are the same size, 
corresponding to 100% probability of being in the corresponding state. 

Figure 7 illustrates this notion.  It shows that when expected prices are 
held constant among scenarios, expected profits increase as price 
uncertainty increases.  This again shows that the problem of committing and 
dispatching a generator is analogous to that of exercising a financial option.  
The option value generally increases when uncertainty increases15.  This is 
because a peaking generator is able to follow changes more readily than 
other types of generators.  Thus, price volatility is beneficial to peaking 
units, a result that may be familiar to many readers.  In Figure 11, we are 
able to precisely quantify just how large is this benefit. 

 

                                                      
15 An intermediate or cycling generator has less optionality features because inter-temporal 

constraints affect its profits, and has features similar to Asian options [9].  A baseload 
generator has even less optionality features (excepting for the important question of which 
market to sell into), usually because its incremental costs are generally well below the 
market prices and is analogous to forward contracts [9].   
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Figure 7.  Variation in expected profit as a function of energy price uncertainty.  As 
energy price uncertainty increases, the expected profits increase for this generator.  

 
Figure 8 illustrates the expected sales of energy and reserves as a 

function of time.  Note the striking fact that the generator in question offers 
energy only during certain periods, but derives income from making 
reserves available during many more periods.   

 

 

Figure 8. Optimal sales of energy and reserves  
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7. CONCLUSIONS 

The main contribution of this paper is to describe the multi-period 
multi-market uncertain framework within which decisions for unit 
commitment and dispatch will have to take place for many units that operate 
in a deregulated market.  The paper applies directly to the problem of 
optimal generator self-commitment. This paper describes a method for 
finding the most profitable market-responsive commitment and dispatch 
policy that takes into full account the optionality available to a generator: 
reserve market opportunities, multiple markets, price uncertainty, and inter-
temporal constraints. The model uses backward dynamic programming. The 
algorithm used by the model can be thought of as a generalized tree that 
values and exercises a sequence of complicated options. This algorithm can 
be used to obtain optimal power market bids for energy and reserve services 
in markets that integrate both these needs.  The method can also be used to 
profitably allocate output in different physical forward markets, e.g., hour-
ahead versus day-ahead.  
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APPENDIX A 

This appendix describes how a profit-maximizing generator would 
dispatch energy and reserve availability services given exogenous market 
prices for a given hour, and given that it is committed to be online. 

Assumptions 
Consider the output choice faced by a generator that can offer, in any 

given hour, energy and four reserve services.  Assume that the energy price 
is PE, and that the availability prices for the four reserves are PR1, PR2, 
PR3, PR4 respectively. Suppose that the generator has maximum output 
level ME, and that, because of ramping limitations, the generator can 
provide the maximum quantities of the reserve XR1 for reserve 1, XR2 for 
reserve 2, XR3 for reserve 3, and XR4 for reserve 4.  Further suppose that 
the generator’s production cost function is: 

 COST = a XE2 + b XE + c (A-1) 

where a, b, and c are constants and XE is the generator’s quantity of offered 
energy.  What quantities of energy and reserves should the generator offer if 
it is maximizing profits? 

The Optimization Problem 
The generators problem is to maximize profits16: 
π =  PE*XE + PR1*XR1 + PR2*XR2 + PR3*XR3 + PR4*XR4  

   (a XE2 + b XE + c)  (A-2) 

                                                      
16 When a generator offers reserves, there is a certain probability of these reserves being 

called.  One can easily include this effect in the objective function (A-2).  



Draft version of Chapter 6,  "The Next Generation of Electric Power Unit Commitment Models", Intl. 
Series in Operations Research and Management Science, vol. 36, Kluwer Academic Publishers, Boston, 
April 2001 (editors: B. F. Hobbs et al) 

23 

subject to the constraints that all energy and reserve quantities must respect 
maximum limits: 

 XE + XR1 + XR2 + XR3 + XR4  ≤  ME (A-3a) 

 XR1  ≤  MR1 (A-3b) 

 XR2  ≤  MR2 (A-3c) 

 XR3  ≤  MR3 (A-3d) 

 XR4  ≤  MR4 (A-3e) 
For simplicity and without loss of generality, we ignore the constraints 

that all reserve quantities must be non-negative, and that the energy quantity 
have a minimum limit.  Although equations (A-2) and (A-3) make the 
reserves all appear to be mathematically identical, they are not because we 
assume (reasonably) that reserve prices have a particular order17: 

 PR1  ≥  PR2  ≥  PR3  ≥  PR4  ≥ 0 (A-4) 
Because production costs (A-1) depend only upon energy output, the 

generator will prefer to sell Reserve 1 first and Reserve 4 last. 
The solution to the above problem is: 

(A-5) 

 
If Reserve 1 is (optimally) offered in a positive quantity that is less than 

its limit, then µ=PR1.  But if Reserve 1 is (optimally) offered to its limit, 
then µ<PR1.  In general: 

•  if Reserve j is offered at all, then all reserves <j are at their 
limits; 

•  if Reserve j is offered in a positive quantity that is less than 
its limit, then µ=PRj and all reserves >j are not offered at 
all. 

                                                      
17 Because of market imperfections, this relationship is not always obeyed; e.g. see historical 

ancillary service prices from the California ISO website (http://www.caiso.com). 

a
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